
Allele Registry
versions 1.01.xx

API specification
document version 1

Table of Contents

Introduction..3
Sending HTTP requests...3

Bash..3
Ruby...4
Python...5

Authentication...5
Error responses..6
Parameter set in HTTP header...7
Adjusting response format...7

Objects returned by API calls...8
Allele...8
Reference Sequence..14
Gene...16

Query and registration of alleles by their definition...17
Query allele by HGVS expression..17
Bulk query of alleles with HGVS expressions or identifiers..17
Bulk query of alleles with VCF file..21
Register new alleles...21

Annotation of VCF files...23
Annotation of VCF file..23
Annotation of VCF file with registration of unknown alleles...23

Queries..24
Query objects by their names..24
Query single gene by HGNC symbol..25
Query all genes..25
Query reference sequences by gene..25
Query reference sequences by reference genome...26
Query canonical alleles by reference sequence locus...26
Query canonical alleles by genes..27
Query canonical alleles by identifiers from external records..27

External sources...28
List properties of all external sources..28
List properties of single external source..28
Return vector of alleles having links to given external source..28
Register single link to external source..28
Bulk registration of links to external sources..29
Remove link(s) to external source from given allele..29
Remove all links to given external source...29

Introduction

Allele Registry provides URIs for canonical alleles defined at the level of nucleic acid sequences
(genomic and transcript alleles) or at the protein level (amino acid sequences). Different labels and
definitions of the same allele are always represented by the same URI. Canonical allele embraces
various names of the same allele and its definitions in the context of different reference sequences (both
assemblies and transcripts). Nucleic acid and amino acid canonical alleles are defined in separate
spaces and never share the same URI.

This document describes API for Allele Registry that allows querying as well as registering alleles and
obtaining their URI in real time. The API is based on HTTP protocol and always returns data in JSON
format. New fields may be added in the future, so developers using this API should assume that all
structures may contain additional fields not described in this document.

Allele Registry is identified on the Internet by DNS name. This address will be denoted in this

document by {ServerName}. The official instance of Allele Registry is currently available at the

addresses http://reg . genome.network and http://reg.clinicalgenome.org. There is also a test server
available at the location http://reg.test.genome.network, providing safe test environment. All examples
provided in this documentation use URLs from the test server, they must be changed to official
URL in production-ready source code. The test and the production server may contain different
set of alleles and identifiers of the same alleles may be different on both servers.

Registration of new alleles requires an active account on the Allele Registry server. For the testing
purposes please use the account with a login “testuser” and a password “testuser” available on the test
server. To get an account on the production server please contact us at bcm.clingen@gmail.com. All
other services than alleles registration are publicly available and do not require any authentication.

Sending HTTP requests

The Allele Registry API is based on HTTP requests. There are three types of HTTP requests used by
this API: GET, POST and PUT. All HTTP GET requests can be send with the use of any Internet
browser (just copy the URL to the address bar), but for sending POST and PUT requests some more
advanced tool is needed. Moreover, all PUT requests requires authentication, what is described in the
next section. Ready scripts for sending POST and PUT requests with payload from given file can be

found at http://{ServerName}/doc/scripts.

Below you can find examples how to send GET, POST and PUT requests from bash console and from
chosen programming languages. Variables “login” and “password” must be set in advance.

Bash

These sections contain sequence of commands which may be run from bash console (by copy & paste).

mailto:bcm.clingen@gmail.com
http://reg.test.genome.network/
http://reg.clinicalgenome.org/
http://reg.genome.network/
http://reg.genome.network/
http://reg.genome.network/

They require some additional tools like curl or sha1sum and depend on standard tools like echo, cut
etc.. Different behavior of these dependencies may perturb some examples. However provided code
snippets should work on the majority of modern Linux distributions.

send a GET request with parameter
URL="http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077C>T"
URL=${URL//>/%3E} # convert symbol > to special code %3E
curl -X GET "${URL}"

send a POST requests with parameter and payload taken from the file alleles.txt
URL="http://reg.test.genome.network/alleles?file=hgvs"
curl -X POST "${URL}" --data-binary @alleles.txt

calculate authentication parameters and send a PUT request
you have to set LOGIN and PASSWORD here
URL="http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077del"
IDENTITY=`echo -n "${LOGIN}${PASSWORD}" | sha1sum | cut -d \ -f 1`
TIME=`date +%s | tr -d "\n"`
TOKEN=`echo -n "${URL}${IDENTITY}${TIME}" | sha1sum | cut -d \ -f 1`
REQUEST="${URL}&gbLogin=${LOGIN}&gbTime=${TIME}&gbToken=${TOKEN}"
curl -X PUT "${REQUEST}"

Ruby

All included ruby code snippets should work with ruby version >= 1.8.7.

require 'net/http'
require 'digest/sha1'

send a GET request with parameter
url = 'http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077C>T'
url = URI.escape(url) # convert symbol > to special code %3E
http = Net::HTTP.new(URI(url).host)
req = Net::HTTP::Get.new(url)
res = http.request(req)
print res.body

send a POST requests with parameter and payload taken from the file alleles.txt
url = 'http://reg.test.genome.network/alleles?file=hgvs'
http = Net::HTTP.new(URI(url).host)
req = Net::HTTP::Post.new(url)
req.body = File.open('alleles.txt').read
res = http.request(req)
print res.body

calculate authentication parameters and send a PUT request
you have to set login and password here
url = 'http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077del'
identity = Digest::SHA1.hexdigest("#{login}#{password}")
gbTime = Time.now.to_i.to_s
token = Digest::SHA1.hexdigest("#{url}#{identity}#{gbTime}")
request = "#{url}&gbLogin=#{login}&gbTime=#{gbTime}&gbToken=#{token}"
http = Net::HTTP.new(URI(url).host)
req = Net::HTTP::Put.new(request)
res = http.request(req)
print res.body

Python

Python code snippets should work with python version >= 2.7. The library “request” is not a part of the
Python Standard Library and probably must be installed separately (in Linux it should be available
through default package manager).

import requests
import hashlib
import time

send a GET request with parameter
url = 'http://reg.test.genome.network/allele?hgvs='
convert symbol > to special code %3E
url += requests.utils.quote("NC_000010.11:g.87894077C>T")
res = requests.get(url)
print(res.text)

send a POST requests with parameter and payload taken from the file alleles.txt
url = 'http://reg.test.genome.network/alleles?file=hgvs'
res = requests.post(url, data=open('alleles.txt').read())
print(res.text)

calculate authentication parameters and send a PUT request
you have to set login and password here
url = 'http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077del'
identity = hashlib.sha1((login + password).encode('utf-8')).hexdigest()
gbTime = str(int(time.time()))
token = hashlib.sha1((url + identity + gbTime).encode('utf-8')).hexdigest()
request = url + '&gbLogin=' + login + '&gbTime=' + gbTime + '&gbToken=' + token
res = requests.put(request)
print(res.text)

Authentication

While all HTTP GET and HTTP POST requests are accepted without authentication, an active account
in the Allele Registry is required for sending all HTTP PUT requests. Three special parameters must be
added to every request that needs an authentication:

1. gbLogin – user login

2. gbTime – current time saved as integer number of seconds since the Epoch

3. gbToken – special token calculated from original request URL, gbLogin, gbTime and user
password

The parameter gbToken is calculated in the following way:

SHA1_hex(url + SHA1_hex(gbLogin + password) + gbTime)

where url is the original request (without gbLogin, gbTime and gbToken, if there is no parameters it
must have question mark at the end), operator + denotes simple string concatenation and SHA1_hex(...)
denotes hexadecimal representation of SHA1 calculated on given ASCII string.

In the section above there are sample code snippets which may be used for preparing a request with
authentication.

Error responses

All responses with status different than HTTP SUCCESS contain a body with a single JSON object
consisting of the following fields:

Name Type When returned? Description

errorType string always Error type, see the table below

description string always Description of error type given above

message string may be missing Detailed information about error

Returned error object may also contain some additional fields, depending on the errorType. The field
errorType always contains one of the short strings from the table below.

errorType description HTTP status

NotFound The system does not contain any data
about requested resource.

404 (Not Found)

AuthorizationError Access denied because of authorization
failure.

403 (Forbidden)

IncorrectRequest The request sent to the server is incorrect. 400 (Bad Request)

HgvsParsingError Given HGVS expressions cannot be
parsed. It is incorrect or not supported.

400 (Bad Request)

IncorrectHgvsPosition Position given in HGVS expression is
incorrect.

400 (Bad Request)

IncorrectReferenceAllele Given allele from reference sequence is
incorrect. It does not match actual
sequence at given position.

400 (Bad Request)

NoConsistentAlignment Given allele cannot be mapped in
consistent way to reference genome.

400 (Bad Request)

UnknownCDS The boundary of coding sequence for
given transcript is not known.

400 (Bad Request)

UnknownGene Given reference sequence is not assigned
to any gene.

400 (Bad Request)

UnknownReferenceSequence Given reference sequence is not known. 400 (Bad Request)

VcfParsingError Sent VCF file cannot be parsed. It is
incorrect or contains unsupported
features.

400 (Bad Request)

RequestTooLarge The request size cannot exceed 2000
records. It means that the 'limit'
parameter in queries must be set to value
<= 2000. Also size of any bulk requests
cannot exceed 2000 alleles.

400 (Bad Request)

InternalServerError Internal error occurred. Please, report it
as an error.

500 (Internal Server Error)

Parameter set in HTTP header

All responses returned by Allele Registry have special parameter set in HTTP header:

• X-CAR-Version

It contains version of Allele Registry installed on the server. All official releases are denoted by three
numbers separated by dots (e.g. 0.08.06).

Adjusting response format

As a response Allele Registry returns a single JSON object or an array of JSON objects. If URL from a
HTTP request does not specify a protocol, returned JSON content is formatted in user-friendly way.
When protocol is set to “json”, returned JSON objects are compressed in single lines without any
unnecessary white spaces. If a response consists of an array of objects, each object is saved in separate
line. First line starts from ‘[‘ character, following lines start from ‘,’ character and the last line consists
of single ‘]’ character.

The content of a response can be controlled by optional parameter “fields”. It can have one of the
following values:

• fields=none[+|­field][+|­field][+|­field]…

• fields=all[+|­field][+|­field][+|­field]…

The first version (“none”) corresponds to empty documents to which we can add expected fields, e.g:

fields=none+@id+externalRecords.dbSNP.rs

means that returned documents are going to contain only fields “@id” and “externalRecords.dbSNP.rs”.
The rest of document content will be omitted. The second version of “field” parameter (“all”) starts
from full document structure and allow to modify content of the response by cutting of (“subtract”)
unwanted fields. Both these expressions are always parsed from left to right, what allows for defining
more complicate rules, e.g.:

fields=none+externalRecords­externalRecords.dbSNP

is going to return documents with structure “externalRecords”, but without nested structure “dbSNP”.

Objects returned by API calls

There are three main types of objects accessible through API and uniquely identified by the following
URIs:

• alleles – http://{ServerName}/allele/{id}

• genes – http://{ServerName}/gene/{id}

• reference sequences – http://{ServerName}/refseq/{id}

HTTP request to object's URI returns HTTP NOT FOUND status if there is no object with a given URI
or HTTP OK status with JSON representation of the object in response's body. The formats of possible
responses are described in the following sections. Objects defined below are used in responses for a
majority of API requests described in this document.

All objects may contain some additional fields, not described in this documentation. No assumption
should be made about these undocumented fields.

Allele

URL: http://{ServerName}/allele/{id}

There are two type of Allele objects: “nucleotide” (in genomic space) and “amino-acid” (in protein
space). Identifiers of the former ones begin with prefix “CA”, while the latter ones have prefix “PA”.

The successful response contains exactly one Allele object with the fields defined in the following
table.

Allele object:

Name Type When returned? Description

@id An allele URI always The URI of the allele.

type “nucleotide” or
“amino-acid”

always The type of the allele.

activeUris An array of allele
URIs

if and only if the URI is inactive The list of active allele
URIs that superseded the
current one.

externalRecords Object
externalRecords
(see below)

only if the URI is active and
there are known links to similar
records in other systems

Known records from other
systems with the allele.

externalSources Object
externalSources
(see below)

only if there are links provided
by users; this section is not
visible by default

See “External sources”
section. The parameter
“fields” must be adjusted to
fetch this section.

genomicAlleles A non-empty array
of objects
alleleDefinition
(see below)

only if the URI is active and
alleleType is set to “nucleotide”,
omitted when empty

A list of known definitions
of the allele in the context
of genomic reference
sequences.

transcriptAlleles A non-empty array
of objects
alleleDefinition
(see below)

only if the URI is active and the
alleleType is set to “nucleotide”,
omitted when empty

A list of known definitions
of the allele in the context
of transcript reference
sequences.

aminoAcidAlleles A non-empty array
of objects
alleleDefinition
(see below)

if and only if the URI is active
and the alleleType is set to
“amino-acid”

A list of known definitions
of the allele in the context
of amino-acid reference
sequences.

externalRecords – object used in definition of Allele object:

Name Type When
returned?

Description

dbSNP An array
of objects

Only if
non-empty

Objects contain the following fields:
• @id – link to record in dbSNP
• rs – rs number from dbSNP

ClinVarAlleles An array
of objects

Only if
non-empty

Objects contain the following fields:
• @id – link to Allele record in ClinVar
• alleleId
• preferredName

ClinVarVariations An array
of objects

Only if
non-empty

Objects contain the following fields:
• @id – link to Variation record in ClinVar
• variationId
• RCV – array of strings

MyVariantInfo_hg38 An array
of objects

Only if
non-empty

Objects contain the following fields:
• @id – link to record in MyVariant.info (hg38)
• id – record ID (for hg38 assembly)

MyVariantInfo_hg19 An array
of objects

Only if
non-empty

Objects contain the following fields:
• @id – link to record in MyVariant.info (hg19)
• id – record ID (for hg19 assembly)

ExAC An array
of objects

Only if
non-empty

Objects contain the following fields:
• @id – link to record in ExAC
• id – ExAC variant ID
• variant – ExAC variant name

gnomAD An array
of objects

Only if
non-empty

Objects contain the following fields:
• @id – link to record in gnomAD
• id – gnomAD variant ID
• variant – gnomAD variant name

COSMIC An array
of objects

Only if
non-empty

Objects contain the following fields:
• @id – link to record in COSMIC (is set only

for active COSMIC records)
• id – COSMIC variant ID
• active – true/false

externalSources – object used in definition of Allele object:

Name Type When
returned?

Description

name of the external
source is used

An array
of objects

Only if
non-empty

Objects contain the following fields:
• @id – link to record (preferably for API level)
• guiUrl – link to record (preferably for GUI

level, may be the same as the previous one)
• guiLabel – user-friendly label

alleleDefinition – object used in definition of Allele object:

Name Type When returned? Description

hgvs An array of strings always Non-empty list of HGVS
expressions defining the allele in the
context of single reference sequence.

referenceSequence A refseq URI always The URI of the reference sequence.

gene A gene URI If reference
sequence has
assigned gene

The URI of the gene assigned to the
reference sequence

geneSymbol String If reference
sequence has
assigned gene

The official symbol of the gene
assigned to the reference sequence

geneNCBI_id A non-negative
integer

If reference
sequence has
assigned gene

The NCBI id of the gene assigned to
the reference sequence

coordinates A non-empty array of
objects coordinates
(see below)

always A list of subsequences of reference
sequence belonging to the allele

referenceGenome “NCBI36” or
“GRCh37” or
“GRCh38”

If and only if the
reference sequence
linked above has
the same field

Value of this property is taken from
corresponding field in the reference
sequence object with the URI given
above.

chromosome one of the strings:
“1”, “2”, …, “22”,
“X”, “Y”, “MT”

If and only if the
reference sequence
linked above has
the same field

Value of this property is taken from
corresponding field in the reference
sequence object with the URI given
above.

coordinates – object used in definition of alleleDefinition object (that is used in Allele object):

Name Type When returned? Description

start A non-negative integer always Begin of a reference
subsequence covered
by allele.

end A non-negative integer always End of a reference
subsequence covered
by allele.

startIntronOffset A non-negative integer if and only if the reference
sequence is transcript and
the allele begins inside an
intron

Distance (offset) of
start position in an
intron to the nearest
exon.

startIntronDirection “+” or “-” if and only if the reference
sequence is transcript and
the allele begins inside an
intron

Direction of the offset
defined above.

endIntronOffset A non-negative integer if and only if the reference
sequence is transcript and
the allele ends inside an
intron

Distance (offset) of
end position in an
intron to the nearest
exon.

endIntronDirection “+” or “-” if and only if the reference
sequence is transcript and
the allele ends inside an
intron

Direction of the offset
defined above.

referenceAllele String consisting of letters:
'A', 'C', 'G', 'T' for genomic
and transcript alleles or
sequence of protein symbols
for amino-acid alleles

always Original reference
subsequence defined
by the coordinates
above.

allele String consisting of letters:
'A', 'C', 'G', 'T' for genomic
and transcript alleles or
sequence of protein symbols
for amino-acid alleles

always Sequence put in place
of reference
subsequence defined
above.

Example:

request: HTTP GET http://reg.test.genome.network/allele/CA012345

response:
{
 "@context": "http://reg.test.genome.network/schema/allele.jsonld",
 "@id": "http://reg.test.genome.network/allele/CA012345",
 "type": "nucleotide",
 "externalRecords": {
 "dbSNP": [
 {
 "@id": "http://www.ncbi.nlm.nih.gov/snp/749469486",
 "rs": 749469486
 }
],
 "ClinVarVariations": [
 {
 "@id": "http://www.ncbi.nlm.nih.gov/clinvar/variation/186550",
 "variationId": 186550,
 "RCV": ["RCV000166164"]
 }
],
 "ClinVarAlleles": [
 {
 "@id": "http://www.ncbi.nlm.nih.gov/clinvar/?term=183678[alleleid]",
 "alleleId": 183678,
 "preferredName": "NM_000059.3(BRCA2):c.1543A>G (p.Thr515Ala)"
 }
]
 },
 "genomicAlleles": [
 {
 "hgvs": ["NC_000013.11:g.32333021A>G"],
 "referenceSequence": "http://reg.test.genome.network/refseq/RS542947913077",
 "coordinates": [
 {
 "end": 32333021,
 "allele": "G",
 "start": 32333020,
 "referenceAllele": "A"
 }
],
 "referenceGenome": "GRCh38",
 "chromosome": "13"
 }
],
 "transcriptAlleles": [
 {
 "coordinates": [
 {
 "end": 1770,
 "allele": "G",
 "start": 1769,
 "referenceAllele": "A"
 }
],
 "referenceSequence": "http://reg.test.genome.network/refseq/RS938330737581",
 "gene": "http://reg.genome.network/gene/GN1101",
 "hgvs": ["NM_000059.3:c.1543A>G", "LRG_293t1:c.1543A>G"]
 }
]
}

http://reg.test.genome.network/allele/CA012345

Reference Sequence

URL: http://{ServerName}/refseq/{id}
Fields description:

Name Type When returned? Description

@id A refseq URI always The URI of the reference sequence.

externalRecords Object
externalRecords

only if there are known
links to similar records
in other systems

Known records from other systems
with the reference sequence.

type “chromosome”or
“transcript” or
“amino-acid”

always

referenceGenome “NCBI36” or
“GRCh37” or
“GRCh38”

if and only if the field
“type” is set to
“chromosome”

The genome build in which the
chromosomal reference sequence is
referenced.

chromosome one of the strings:
“1”, “2”, …, “22”,
“X”, “Y”, “MT”

if and only if the the
field “type” is set to
“chromosome”

gene A gene URI only if the type is
“transcript”, may be
omitted

The URI of a gene associated with
this transcript reference sequence.

Example 1:

request: HTTP GET http://reg.test.genome.network/refseq/RS000065
response:
{
 "@context": "http://reg.test.genome.network/schema/refseq.jsonld",
 "@id": "http://reg.test.genome.network/refseq/RS000065",
 "type": "chromosome",
 "externalRecords": {
 "NCBI": {
 "@id": "http://www.ncbi.nlm.nih.gov/nuccore/NC_000017.11",
 "id": "NC_000017.11"
 }
 },
 "referenceGenome": "GRCh38",
 "chromosome": "17"
}

http://reg.test.genome.network/refseq/RS000065

Example 2:

request: HTTP GET http://reg.test.genome.network/refseq/RS011494
response:
{
 "@context": "http://reg.test.genome.network/schema/refseq.jsonld",
 "@id": "http://reg.test.genome.network/refseq/RS011494",
 "type": "transcript",
 "externalRecords": {
 "LRG": {
 "@id":
"http://ftp.ebi.ac.uk/pub/databases/lrgex/LRG_321.xml#transcripts_anchor",
 "id": "LRG_321t6"
 },
 "NCBI": {
 "@id": "http://www.ncbi.nlm.nih.gov/nuccore/NM_001126116.1",
 "id": "NM_001126116.1"
 }
 },
 "gene": "http://reg.test.genome.network/gene/GN11998"
}

Example 3:

request: HTTP GET http://reg.test.genome.network/refseq/RS167707

response:
{
 "@context": "http://reg.test.genome.network/schema/refseq.jsonld",
 "@id": "http://reg.test.genome.network/refseq/RS167707",
 "type": "amino-acid",
 "externalRecords": {
 "NCBI": {
 "@id": "www.ncbi.nlm.nih.gov/nuccore/NP_001813.1",
 "id": "NP_001813.1"
 }
 }
}

http://reg.test.genome.network/refseq/RS167707
http://www.ncbi.nlm.nih.gov/nuccore/NM_001126116.1
http://reg.test.genome.network/refseq/RS011494

Gene

URL: http://{ServerName}/gene/{id}
Fields definition:

Name Type When returned? Description

@id A gene URI always The URI of the gene.

externalRecords Object
externalRecords

only if there are known links to
similar records in other systems

Known records from other
systems with the gene.

names An array of
strings

if not empty A list of known gene's names
(labels) not mentioned in the
externalRecords.

Example:

request: HTTP GET http://reg.test.genome.network/gene/GN11998

response:
{
 "@context": "http://reg.test.genome.network/schema/gene.jsonld",
 "@id": "http://reg.test.genome.network/gene/GN11998",
 "externalRecords": {
 "NCBI": {
 "@id": "http://www.ncbi.nlm.nih.gov/gene/7157",
 "id": "7157"
 },
 "HGNC": {
 "@id": "http://www.genenames.org/cgi-bin/gene_symbol_report?
hgnc_id=HGNC:11998",
 "id": "HGNC:11998",
 "symbol": "TP53",
 "name": "tumor protein p53"
 }
 },
 "names": [
 "LFS1",
 "p53"
]
}

http://reg.test.genome.network/gene/GN11998

Query and registration of alleles by
their definition

Alleles can be unambiguously defined by providing set of parameters. One of the possibility is to
describe alleles by providing identifier of reference sequence, begin and end position of the original
subsequence and new sequence inserted in this region. The best option for defining variant as single
label is to use HGVS notation. HGVS is the standard notations for variants definition, its description
can be found at http://varnomen.hgvs.org. Allele Registry allows for querying and registering alleles by
using both HGVS expressions and VCF files.

Query allele by HGVS expression

Single allele can be queried by HGVS string with the following HTTP GET request:

http://{ServerName}/allele?hgvs={HGVS}

This query returns responses with single allele object. When given allele is not in the registry, the allele
object is also returned, but the field “@id” contains value "_:CA" instead of allele URI. In both cases
the status HTTP SUCCESS is returned.

Example:

request: HTTP GET http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077C>T

response: analogical like for an corresponding allele URI

Bulk query of alleles with HGVS expressions or identifiers

In case of many HGVS queries, the efficiency can be improved by grouping many HGVS expressions
in single text file and sending it as a single HTTP POST request. Each line in this text file must contain
expression for single Allele. Alleles can be also queried in the same way by using CA/PA IDs or some
other identifiers. The file content must be sent as a payload and the HTTP POST request must have the
following syntax:

http://{ServerName}/alleles?file={name}

As a result the request will return vector of canonical allele objects in the same order as occurrences of
corresponding expression in the payload. In case of an error corresponding vector element is going to
contain an error object instead of canonical allele object. Occurrence of an error for single line in
payload does not influence the results of the others lines.

The value of the parameter “file” defines the content of the payload. Allowed values are summarized in
the following table:

http://reg.test.genome.network/allele?hgvs=NC_000010.11:g.87894077C%3ET
http://varnomen.hgvs.org/

{name} Required format in the payload

hgvs well-defined HGVS expression

id CA ID or PA ID

MyVariantInfo_hg19.id e.g. chr9:g.107620835G>A

MyVariantInfo_hg38.id the same as above

ExAC.id e.g. 5-112043382-A-G

gnomAD.id the same as above

Example

To send HTTP POST request with payload the script request_with_payload.sh available at the

location http://{ServerName}/doc/scripts/ can be used. Versions for Python and Ruby

are also available.

Request: request_with_payload.sh http://reg.test.genome.network/alleles?file=hgvs hgvs_3.txt

The file hgvs_3.txt contains the following 3 lines:
NC_000017.10:g.43009069G>C
NC_000017.10:g.43009090G>T
NC_000017.10:g.43009127delG

Response:
[
 {
 "@context": "http://reg.test.genome.network/schema/allele.jsonld",
 "@id": "http://reg.test.genome.network/allele/CA2513066",
 "type": "nucleotide",
 "externalRecords": {
 "ExAC": [{
 "variant": "17:43009069 G / C",
 "@id": "http://exac.broadinstitute.org/variant/17-43009069-G-C"
 }]
 },
 "genomicAlleles": [
 {
 "referenceGenome": "GRCh38",
 "chromosome": "17",
 "referenceSequence": "http://reg.test.genome.network/refseq/RS000065",
 "hgvs": ["NC_000017.11:g.44931701G>C", "CM000679.2:g.44931701G>C"],
 "coordinates": [{
 "allele": "C",
 "start": 44931700,
 "end": 44931701,
 "referenceAllele": "G"
 }]
 },
 {
 "referenceGenome": "GRCh37" ,
 "coordinates": [{
 "start": 43009068,
 "allele": "C",
 "referenceAllele": "G",
 "end": 43009069
 }],
 "hgvs": ["NC_000017.10:g.43009069G>C", "CM000679.1:g.43009069G>C"],
 "chromosome": "17",

 "referenceSequence": "http://reg.test.genome.network/refseq/RS000041"
 }
],
 "transcriptAlleles": [
 {
 "referenceSequence": "http://reg.test.genome.network/refseq/RS020036",
 "hgvs": ["NM_001264573.1:c.1454C>G"],
 "gene": "http://reg.test.genome.network/gene/GN027102",
 "coordinates": [{
 "allele": "G",
 "start": 1551,
 "end": 1552,
 "referenceAllele": "C"
 }]
 },
 {
 "referenceSequence": "http://reg.test.genome.network/refseq/RS394040",
 "hgvs": ["ENST00000593135.5:c.1418C>G"],
 "coordinates": [{
 "allele": "G",
 "start": 1515,
 "end": 1516,
 "referenceAllele": "C"
 }]
 }]
 },
 {
 "@context": "http://reg.test.genome.network/schema/allele.jsonld",
 "@id": "http://reg.test.genome.network/allele/CA2513067",
 "type": "nucleotide",
 "genomicAlleles": [
 {
 "referenceGenome": "GRCh38",
 "chromosome": "17",
 "referenceSequence": "http://reg.test.genome.network/refseq/RS000065",
 "hgvs": ["NC_000017.11:g.44931722G>T", "CM000679.2:g.44931722G>T"],
 "coordinates": [{
 "allele": "T",
 "start": 44931721,
 "end": 44931722,
 "referenceAllele": "G"
 }]
 },
 {
 "referenceGenome": "GRCh37" ,
 "coordinates": [{
 "start": 43009089,
 "allele": "T",
 "referenceAllele": "G",
 "end": 43009090
 }],
 "hgvs": ["NC_000017.10:g.43009090G>T", "CM000679.1:g.43009090G>T"],
 "chromosome": "17",
 "referenceSequence": "http://reg.test.genome.network/refseq/RS000041"
 }
],
 "transcriptAlleles": [
 {
 "referenceSequence": "http://reg.test.genome.network/refseq/RS020036",
 "hgvs": ["NM_001264573.1:c.1433C>A"],
 "gene": "http://reg.test.genome.network/gene/GN027102",
 "coordinates": [{
 "allele": "A",
 "start": 1530,
 "end": 1531,
 "referenceAllele": "C"

 }]
 }]
 },
 {
 "@context": "http://reg.test.genome.network/schema/allele.jsonld",
 "@id": "http://reg.test.genome.network/allele/CA2513074",
 "type": "nucleotide",
 "externalRecords": {
 "ExAC": [{
 "variant": "17:43009126 AG / A",
 "@id": "http://exac.broadinstitute.org/variant/17-43009126-AG-A"
 }]
 },
 "genomicAlleles": [
 {
 "referenceGenome": "GRCh38",
 "chromosome": "17",
 "referenceSequence": "http://reg.test.genome.network/refseq/RS000065",
 "hgvs": ["NC_000017.11:g.44931762del", "CM000679.2:g.44931762del"],
 "coordinates": [{
 "allele": "",
 "start": 44931758,
 "end": 44931759,
 "referenceAllele": "G"
 }]
 },
 {
 "referenceGenome": "GRCh37" ,
 "coordinates": [{
 "start": 43009126,
 "allele": "",
 "referenceAllele": "G",
 "end": 43009127
 }],
 "hgvs": ["NC_000017.10:g.43009130del", "CM000679.1:g.43009130del"],
 "chromosome": "17",
 "referenceSequence": "http://reg.test.genome.network/refseq/RS000041"
 }
],
 "transcriptAlleles": [
 {
 "referenceSequence": "http://reg.test.genome.network/refseq/RS020036",
 "hgvs": ["NM_001264573.1:c.1426-30del"],
 "gene": "http://reg.test.genome.network/gene/GN027102",
 "coordinates": [{
 "startIntronDirection": 45,
 "allele": "",
 "start": 1523,
 "endIntronOffset": 32,
 "endIntronDirection": 45,
 "end": 1523,
 "referenceAllele": "C",
 "startIntronOffset": 33
 }]
 }
]
 }
]

Bulk query of alleles with VCF file

Similar bulk query can be run for VCF file. In this case the input file must be a valid VCF file and must

contain a ##contig parameter in the header for every chromosome id used in the file. Moreover each

##contig parameter should contain at least two fields named 'ID' and 'assembly'. The current version

of Allele Registry support the following values of ‘ID’ and ‘assembly’ fields:

• ID: 1-22, X, Y, M, MT, chr1-chr22, chrX, chrY, chrM, chrMT

• assembly: NCBI36, GRCh37, GRCh38, hg18, hg19

‘ID’ values ‘M’ and ‘MT’ denote mitochondrial DNA. For assemblies ‘NCBI36’, ‘hg18’ and ‘hg19’,
variants in mitochondrial DNA are mapped to NC_001807.4 reference sequence while for assemblies
‘GRCh37’ and ‘GRCh38’ they are mapped to NC_012920.1 reference sequence. Whole VCF file
content must be sent as a payload and the HTTP POST request must have the following syntax:

http://{ServerName}/alleles?file=vcf

Example

To send HTTP POST request with payload the script request_with_payload.sh available at the

location http://{ServerName}/doc/scripts/ can be used. Versions for Python and Ruby

are also available.

Request: request_with_payload.sh http://reg.test.genome.network/alleles?file=vcf test_3.vcf

The file test_3.vcf has the following content:
##fileformat=VCFv4.1
##contig=<ID=chr17,assembly=GRCh37>
#CHROM POS ID REF ALT QUAL FILTER INFO
chr17 43009069 . G C 59 PASS DB
chr17 43009090 . G T 59 PASS DB
chr17 43009126 . AG A 60 PASS DB

Response: The same as in the example above (bulk query of alleles with HGVS expressions).

Register new alleles

Requests similar to those three described above can be used to register new alleles in Allele Registry. In
this case the following two modifications must be made:

• the type of request should be HTTP PUT instead of HTTP GET or HTTP POST

• authentication parameters must be added

This kind of request returns the same response as corresponding HTTP GET or HTTP POST requests,
the only difference is that the field “@id” in returned allele objects has always valid URI (new allele is
automatically added if not found in the registry).

Example 1:

To send HTTP PUT request with payload the script request_with_payload.sh available at the

location http://{ServerName}/doc/scripts/ can be used. Versions for Python and Ruby

are also available. The login and password must be provided as third and fourth parameters (please see
the Introduction for details).

Request:

request_with_payload.sh http://reg.test.genome.network/alleles?file=hgvs hgvs_3.txt testuser testuser

The content of file hgvs_3.txt and the response are the same as in the corresponding example with
HTTP POST request (bulk query of alleles with HGVS expressions).

Example 2:

Request:

request_with_payload.sh http://reg.test.genome.network/alleles?file=vcf test_3.vcf testuser testuser

The content of file test_3.vcf and the response are the same as in the corresponding example with
HTTP POST request (bulk query of alleles with VCF file).

Annotation of VCF files

Allele Registry can annotate VCF files with known variants identifiers. The VCF file must be sent as
payload in POST or PUT request.

Annotation of VCF file

Allele Registry parses the content of VCF file sent as payload and returns the same VCF file with
additional identifiers added to ID column. The request has the following syntax:

http://{ServerName}/annotateVcf?assembly={assembly}&ids={ids}

Required parameters:

• assembly – reference genome assembly, possible values: NCBI36, hg18, GRCh37, hg19,

GRCh38, hg38

• ids – list of identifers to add to ID column (separated by commas), possible values: CA,

dbSNP.rs, ClinVar.alleleId, ClinVar.variationId, MyVariantInfo_hg19.id,
MyVariantInfo_hg38.id, ExAC.id, gnomAD.id, ClinVar.RCV, COSMIC.id.

Example:

Request: HTTP POST http://reg.test.genome.network/annotateVcf?assembly=hg19&ids=CA, dbSNP.rs

The payload must contain VCF file with variants defined on the hg19 genome assembly. The request
will return the same VCF file, with CA ID and dbSNP rs ID added to ID column for all variants that are
already registered in the Registry.

Annotation of VCF file with registration of unknown alleles

The request described above can be also sent as PUT request. In this case valid authentication
parameters must be added to the URL. The PUT request will register automatically unknown alleles, so
all recognized records in the VCF file will have assigned CA ID.

Queries

All correct queries return list of matching objects in response's body and status HTTP OK. If there is no
matching object, the response body contains empty list and the returned status is also HTTP OK (HTTP
NOT FOUND is not used in case of queries). The HTTP addresses for querying objects depend on the
object type:

• alleles – http://{ServerName}/alleles

• genes – http://{ServerName}/genes

• reference sequences – http://{ServerName}/refseqs

The type of query is defined by parameters added to the addresses above. All queries accept two special
optional parameters:

• skip – number of first records to skip (default 0)

• limit – maximal number of records to return (unlimited if not set)

Alleles are always returned in order corresponding to their position on GRCh38 genome.

Query objects by their names

Each type of object can be queried by one of his known names. This type of query can be executed by
proper HTTP GET request with parameter “name”:

• alleles – http://{ServerName}/alleles?name={name}

• genes – http://{ServerName}/genes?name={name}

• reference sequences – http://{ServerName}/refseqs?name={name}

Remember that any of these queries may return empty list (if not found) or list containing more than
one element (if the name is not unique). In all these cases the status HTTP OK is returned.

Example:

request: HTTP GET http://reg.test.genome.network/genes?name=TP53

response:
[
 {
 "@context": "http://reg.test.genome.network/schema/gene.jsonld",
 "@id": "http://reg.test.genome.network/gene/GN11998",
 "externalRecords": {
 "NCBI": {
 "id": "7157",
 "@id": "http://www.ncbi.nlm.nih.gov/gene/7157"
 },
 "HGNC": {
 "id": "HGNC:11998",

http://reg.test.genome.network/genes?name=TP53

 "symbol": "TP53",
 "name": "tumor protein p53",
 "@id": "http://www.genenames.org/cgi-bin/gene_symbol_report?
hgnc_id=HGNC:11998"
 }
 },
 "names": [
 "LFS1",
 "p53"
]
 }
]

Query single gene by HGNC symbol

The single gene can be queried by HGNC symbol.

http://{ServerName}/gene?HGNC.symbol={symbol}

Example:

request: HTTP GET
http://reg.test.genome.network/gene?HGNC.symbol=TP53

response:

Single gene object or HTTP NOT FOUND error.

Query all genes

The following request can be used to return the list of all genes:

http://{ServerName}/genes

Example:

request: HTTP GET
http://reg.test.genome.network/genes

response:

List of objects, each object corresponds to single gene.

Query reference sequences by gene

This query returns list of all reference sequences like gene regions, transcripts and proteins, assigned to
given gene.

http://{ServerName}/refseqs?gene={gene_id}

It returns list of matched references sequences.

http://reg.test.genome.network/genes
http://reg.test.genome.network/gene?HGNC.symbol=TP53

Example:

request: HTTP GET
http://reg.test.genome.network/refseqs?gene=GN00012 3

response:

List of objects, each object corresponds to single reference sequence.

Query reference sequences by reference genome

The query returns list of all reference sequences assigned to given genome build (chromosomes,
alternate regions and patches).

http://{ServerName}/refseqs?referenceGenome={assembly}

The parameter “assembly” has to have one of the following values: NCBI36, GRCh37, GRCh38. The
query returns list of matched references sequences.

Example:

request: HTTP GET
http://reg.test.genome.network/refseqs? referenceGenome=GRCh38

response:

List of objects, each object corresponds to single reference sequence (chromosome, mitochondrial
DNA, alternate region or patch).

Query canonical alleles by reference sequence locus

This type of query can return list of alleles defined in the context of given reference sequence and lying
in particular region of this sequence. The simplest version of this query just returns all alleles defined
for given reference:

http://{ServerName}/alleles?refseq={name}

The region of interest can be specified by adding optional parameters “begin” and “end”:

http://{ServerName}/alleles?refseq={name}&begin={pos1}&end={pos2}

Both “begin” and “end” parameters are optional and may be omitted. Missing “begin” parameter means
“beginning of the reference sequence”, similarly missing “end” parameter means “the end of the
reference sequence”.

Example:

request: HTTP GET
http://reg.test.genome.network/alleles?refseq=NM_000546.5&begin=290&end=295

response:

List of objects, each object corresponds to single canonical allele.

http://reg.test.genome.network/alleles?refseq=NM_000546.5&begin=290&end=295
http://reg.test.genome.network/refseqs?referenceGenome=GRCh38
http://reg.test.genome.network/refseqs?referenceGenome=GRCh38
http://reg.test.genome.network/refseqs?gene=GN000123
http://reg.test.genome.network/refseqs?gene=GN000123

Query canonical alleles by genes

Alleles can be queried by genes they are connected to. The query is called by the following HTTP GET

request:

http://{ServerName}/alleles?gene={name}

It returns list of matched alleles.

Example:

request: HTTP GET
http://reg.test.genome.network/alleles? gene=TP53&limit=100
response:

List of objects, each object corresponds to single canonical allele.

Query canonical alleles by identifiers from external records

Alleles can be also queried by some identifiers copied from external systems, like dbSNP rs number or
ClinVar variation identifier. This kind of query has the following format:

http://{ServerName}/alleles?{fieldName}={value}

Supported values of {fieldName} are shown in the table below:

Field Name example

ClinVar.variationId .../alleles?ClinVar.variationId=186550

ClinVar.alleleId .../alleles?ClinVar.alleleId=323677

ClinVar.RCV .../alleles?ClinVar.RCV=RCV000168487

dbSNP.rs .../alleles?dbSNP.rs=786204261

MyVariantInfo_hg19.id .../alleles?MyVariantInfo_hg19.id=chr14:g.23888645T>C

MyVariantInfo_hg38.id .../alleles?MyVariantInfo_hg38.id=chr14:g.23419436T>C

ExAC.id .../alleles?ExAC.id=14­23888645­T­C

gnomAD.id .../alleles?gnomAD.id=14­23888645­T­C

http://reg.test.genome.network/alleles?gene=TP53&limit=100
http://reg.test.genome.network/alleles?gene=TP53&limit=100

External sources

The goal of External Sources is to allow CAR users for publication of links to their variant-related data.
Published links are returned by API and are visible on CAR’s website. These entries are shown in
“externalSources” section in Allele document. On the API level, this section is not returned by default.
The parameter “fields” (see “Adjusting response format”) must be set appropriately (e.g. fields=all) in
requests returning Allele documents to fetch “externalSources” as a part of a response.

List properties of all external sources

This request returns vector of all external sources defined in the system.
Request: GET http://{ServerName}/externalSources

List properties of single external source

This request returns single object describing given external source.
Request: GET http://{ServerName}/externalSource/{sourceName}
{sourceName} - name of an external source

Return vector of alleles having links to given external source

This request returns vector of Allele objects.
Request: GET /alleles?externalSource={sourceName}
{sourceName} - name of an external source
Optional pagination parameters skip and limit are supported (see “Queries”).

Register single link to external source

This requests is accesible only for users assigned to given external source.
Request: PUT /allele/{CAid}/externalSource/{sourceName}
{CAid} – allele ID (CA or PA ID)
{sourceName} - name of an external source
Depending on the definition of the external source, some of the following parameters may be required:

• p1 – value for the first parameter
• p2 – value for the second parameter
• p3 – value for the third parameter

The number of parameters (p1, p2, p3) must match the definition of the external source.
The request return single Allele object with given ID or HTTP NOT FOUND error if Allele with given
ID does not exist.

Bulk registration of links to external sources

This requests is accesible only for users assigned to given external source.
Request 1: /alleles?file=id+externalSource.{sourceName}
Request 2: /alleles?file=hgvs+externalSource.{sourceName}
{sourceName} - name of the external source
The payload must contain two columns separated by TAB character. The first column depend on the
request type:

• For Request 1 (with id) it must contain CA/PA identifiers. If Allele with given ID does not
exists, an error object for is returned (NotFound).

• For Request 2 (with hgvs) hgvs expressions is required. If given Allele does not exists, it is
registered on the fly.

The second column must contain values of parameters required by given external source. The values
must be separated by single SPACE character.
Both requests return vector of corresponding Allele objects.

Remove link(s) to external source from given allele

This requests is accesible only for users assigned to given external source.
Request: DELETE /allele/{CAid}/externalSource/{sourceName}
{CAid} – allele ID (CA or PA ID)
{sourceName} - name of an external source
Depending on the definition of the external source, some of the following parameters may be set:

• p1 – value for the first parameter
• p2 – value for the second parameter
• p3 – value for the third parameter

If no parameters are provided, all links defined for this pair Allele/External Source are deleted. In other
case, the number of parameters (p1, p2, p3) must match the definition of the external source (then
single link is deleted only).
The request return single Allele object with given ID or HTTP NOT FOUND error if Allele with given
ID does not exist.

Remove all links to given external source

This requests is accesible only for users assigned to given external source.
This request remove ALL links to given external source (from all Alleles).
Request: DELETE /externalSource/{sourceName}/links
{sourceName} - name of an external source
This request returns empty object.

	Bash 3
	Ruby 4
	Python 5
	Introduction
	Sending HTTP requests
	Bash
	Ruby
	Python

	Authentication
	Error responses
	Parameter set in HTTP header
	Adjusting response format

	Objects returned by API calls
	Allele
	Reference Sequence
	Gene

	Query and registration of alleles by their definition
	Query allele by HGVS expression
	Bulk query of alleles with HGVS expressions or identifiers
	Bulk query of alleles with VCF file
	Register new alleles

	Annotation of VCF files
	Annotation of VCF file
	Annotation of VCF file with registration of unknown alleles

	Queries
	Query objects by their names
	Query single gene by HGNC symbol
	Query all genes
	Query reference sequences by gene
	Query reference sequences by reference genome
	Query canonical alleles by reference sequence locus
	Query canonical alleles by genes
	Query canonical alleles by identifiers from external records

	External sources
	List properties of all external sources
	List properties of single external source
	Return vector of alleles having links to given external source
	Register single link to external source
	Bulk registration of links to external sources
	Remove link(s) to external source from given allele
	Remove all links to given external source

